3 research outputs found

    Constructive Multiuser Interference in Symbol Level Precoding for the MISO Downlink Channel

    Get PDF
    This paper investigates the problem of interference among the simultaneous multiuser transmissions in the downlink of multiple antennas systems. Using symbol level precoding, a new approach towards the multiuser interference is discussed along this paper. The concept of exploiting the interference between the spatial multiuser transmissions by jointly utilizing the data information (DI) and channel state information (CSI), in order to design symbol-level precoders, is proposed. In this direction, the interference among the data streams is transformed under certain conditions to useful signal that can improve the signal to interference noise ratio (SINR) of the downlink transmissions. We propose a maximum ratio transmission (MRT) based algorithm that jointly exploits DI and CSI to glean the benefits from constructive multiuser interference. Subsequently, a relation between the constructive interference downlink transmission and physical layer multicasting is established. In this context, novel constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receivers is proposed. Furthermore, fairness through maximizing the weighted minimum SINR (max min SINR) of the users is addressed by finding the link between the min power and max min SINR problems. Moreover, heuristic precoding techniques are proposed to tackle the weighted sum rate problem. Finally, extensive numerical results show that the proposed schemes outperform other state of the art techniques.Comment: Submitted to IEEE Transactions on Signal Processin

    Symbol Based Precoding in The Downlink of Cognitive MISO Channels

    Get PDF
    This paper proposes symbol level precoding in the downlink of a MISO cognitive system. The new scheme tries to jointly utilize the data and channel information to design a precoding that minimizes the transmit power at a cognitive base station (CBS); without violating the interference temperature constraint imposed by the primary system. In this framework, the data information is handled at symbol level which enables the characterization the intra-user interference among the cognitive users as an additional source of useful energy that should be exploited. A relation between the constructive multiuser transmissions and physical-layer multicast system is established. Extensive simulations are performed to validate the proposed technique and compare it with conventional techniques.Comment: CROWNCOM 201
    corecore